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Abstract. It is shown that Steiner symmetrisation of the potential leads to a lowering of 
the ground-state energy of the Hamiltonian. Some special cases in which Steiner symmetri- 
sation of the potential leads to the lowering of all the bound-state energy levels of the 
system are presented. A connection between certain exactly solvable potentials via Steiner 
symmetrisation is also brought out. Counterexamples are given to show that, in general, 
the lowering of energy eigenvalues on Steiner symmetrisation does not occur for all levels. 

1. Introduction 

A process of symmetrisation of geometrical objects in all dimensions, now known as 
Steiner symmetrisation, was introduced by Jacob Steiner in 1836 in connection with 
his investigations on the so-called ‘great isoperimetric theorem’-of all closed planar 
curves with a given perimeter, the circle has the largest area. This symmetrisation 
enabled Steiner to considerably generalise the above theorem in various directions and 
to higher dimensions. For example, he showed that a planar polygon of a given number 
of sides and given perimeter has the largest area when it is a regular polygon. 

Comparatively recently, in the 1940s, Polya and Szego applied Steiner’s idea to 
certain isoperimetric problems in physics for the estimation of ‘not easily accessible 
physical quantities on the basis of easily accessible geometrical data’. Application of 
Steiner symmetrisation enabled them to make substantial contributions towards the 
proofs of a large number of conjectures dating from that of Saint-Venant on the 
tortional rigidity of a planar membrane, Rayleigh on the principal frequency of a 
vibrating membrane of arbitrary shape and on the electrostatic capacity of a planar 
plate and similar conjectures of Minkowski, PoincarC and others. The fruitfulness of 
the idea can be gauged by the fact that Polya and Szego were able to provide a unified 
treatment of most of these problems on which the earlier investigators could achieve 
only partial success by using different techniques for different problems. 

More recently, Landau and Lifshitz (1960) derived a very interesting result concern- 
ing potentials having the same Steiner symmetrisation. They were solving the ‘inverse 
problem’ of classical mechanics-of finding the potential from the known form of the 
period of oscillation T as a function of its total energy E. They showed that the 
solution is unique provided the potential has a single minimum and that it is symmetric 
with respect to the location of the minimum. Anticipating the definition of Steiner 
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symmetrisation given later in this paper, what their result means is that all single- 
minimum potentials having the same Steiner symmetrised form lead to the same T (  E ) .  
Such potentials have therefore been called ‘isoperiodic potentials’ by Katriel and  
Rosenhouse (1985). Again, without explicitly using the concept of Steiner symmetrisa- 
tion, Wheeler (1976) has established that every potential in this class has the same 
eigenvalue spectrum in the W K B  approximation. I t  should be noted that all these 
authors implicitly or explicitly consider only single-minimum potentials. Katriel and 
Rosenhouse (1985) have studied the quantum mechanical spectra of several families 
of classically isoperiodic potentials, There is considerable literature (see, for example, 
Nieto 1981, Nieto and Simmons 1979, Nieto and  Gutschick 1981 Ghosh and Hasse 
1981) on families of potentials having the same quantum mechanical energy spectra 
(isospectral potentials) or the same classical period of oscillation. The two classes are 
not identical, though they have a non-null intersection. 

In the present paper, we show, following closely the method used by Polya and 
Szego (1951), that Steiner symmetrisation of the potential energy function leads to a 
lowering of the ground-state eigenvalue of the Schrodinger equation. Since symmetrisa- 
tion generally leads to a simplification in the numerical evaluation of the eigenvalue, 
this lower bound on the actual eigenvalue, together with a variational upper bound, 
could be useful in obtaining a reasonably good estimate of the ground-state energy. 
In  this connection we may also mention that a lower bound for the ground-state energy 
for a wide class of potentials has been established by Barnes et a1 (1976) using a 
generalised form of Young’s inequality obtained independently by Beckner ( 1975) and 
Brascamp and Lieb (1976). They have applied their bound to the power potentials 
V ( x )  = C/xIy,  with the constants C > 0, y > 0. 

We also give a simple argument to show that the lowering of the eigenvalue occurs, 
in general, only for the ground state and not for the excited states. In  a number of 
special cases (in one dimension), Steiner symmetrisation leads to a lowering of all 
levels. These examples are interesting because they illustrate how several different 
exactly solvable potentials are connected with one another through Steiner symmetri- 
sation. 

Accordingly, in § 2 we briefly recall the definition of Steiner symmetrisation and 
recapitulate some pertinent results. Using these we establish the main result of this 
paper: Steiner symmetrisation of the potential lowers the ground-state energy of a 
quantum mechanical system. In  0 3 we present a few examples where exact solutions 
are possible for both the Hamiltonians, before and after the Steiner symmetrisation 
of the potential. Here we find that all the energy levels are lowered on Steiner 
symmetrisation of the potential. Counterexamples are presented in 0 4 to show that 
the lowering occurs, in general, only for the ground-state energy and not for the excited 
states. There we consider the Schrodinger equation with two 8 function potentials. 
Under suitable conditions the corresponding Hamiltonian has two bound states. Steiner 
symmetrisation leads to a single S function potential of appropriate strength having 
only one bound state. Thus the Steiner symmetrised potential has only one bound 
state, whereas the original potential can have two bound states. Hence in this case 
the first excited level of the potential after Steiner symmetrisation (corresponding to 
the lowest level of the positive energy continuum) is higher than the (only) excited 
bound-state energy level in the potential before symmetrisation. Another counter- 
example is provided by comparing the exact eigenenergies of an asymmetric oscillator 
obtained by Ghosh and Hasse (1981) with those of its Steiner symmetrised form. 
Conclusions are summarised in 5 5 .  
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2. Steiner summetrisation of  a function 

Steiner’s original idea of symmetrisation pertained to geometrical objects. Hence the 
suggested construction for symmetrisation was based on geometry. For our present 
purpose, however, we will need an analytical definition of Steiner symmetrisation. 
With the two kinds of symmetrisations defined below (following Polya and Szego 1951) 
(see also Hardy et a/ 1951) one cannot only recover Steiner’s original idea of symmetri- 
sation of geometrical objects, but also give a proper characterisation of symmetrisation 
of open surfaces (open curves) required in the present work. 

We shall first consider Steiner symmetrisation of functions of a single real variable. 
Let f (x )  be a piecewise continuous function of a real variable x defined over the 
interval (a ,  b )  and vanishing at its endpoints. Let M ( y )  be the measure of the set of 
points {xlf(x) 3 y } .  Then the Steiner symmetrised function f ( x )  corresponding to 
f ( x )  is defined as (Polya and Szego 1951) 

f+(tM(Y)) = y f + ( - x )  = f + ( x ) .  (2.1) 
f+(x) is a symmetrically decreasing function of x. In a similar manner, we define a 
symetrically increasing function f - (  x): 

f-(tm(y)) = y f ( - x )  = f ( x )  ( 2 . 2 )  
where m ( y )  is the measure of the set of points {xlf(x) s y } .  It is easy to see that the 
two symmetrised functions defined above are related as 

f - ( x )  = -[-f(x)l+. ( 2 . 3 )  
Generalisation to functions of many variables is straightforward. Thus, if f(x, y ,  z )  is 
a function of three variables x, y and z, Steiner symmetrisation is obtained, for example, 
by consideringf to be a function of z for fixed x and y (Polya and Szego 1951). This 
corresponds to symmetrisation of the function with respect to the xy plane. The 
function may be symmetrised with respect to other planes as well. We shall now recall 
some useful results pertaining to Steiner symmetrisation. 

( i )  If f a  0, it is easy to see from the definitions that 

U-*]+ = [TI‘. (2.4) 

(ii) F o r f ( x ) a O ,  let M + ( y )  be the measure o f the  set of points {xlf’(x) a y } .  Then 
from equation (2.1) we have M + ( y )  = M ( y ) .  It follows that 

where the integrations are performed over the respective domains. The generalisation 
to functions of more than one variable is obvious. 

(iii) For a non-negative function f vanishing outside a certain domain we have 

IVfl’ d x  dy dz  3 IOf+l2 d x  dy dz. I (2.6) 

The proof of the inequality (see Polya and Szego 1951) makes use of the fact that 
under Steiner symmetrisation the volume of a solid remains constant but its surface 
area diminishes (does not increase). An analogous inequality for the case of spherical 
(or ‘Schwarz’) symmetrisation has been derived independently by Glaser et a /  (1976). 
Their inequality, at least intuitively, is a consequence of the above inequality (for 
Steiner symmetrisation), since spherical symmetrisation is achieved by an infinite 
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sequence of Steiner symmetrisations with respect to suitably chosen 'planes' of sym- 
metrisation. 

(iv) For functions f and g the following inequality holds (Hardy er al 1951): 

fg dx dy dz 3 fig- dx dy dz. ( 2 . 7 )  

The above inequality is the extension of the following result which holds for finite- 
dimensional vector spaces. Suppose that only the components (but not their order) 
of two vectors a and b are given. Then their scalar product is largest if the components 
of a and b are arranged in the same order (for example, both increasing or both 
decreasing) and least if they are arranged in the opposite order. (Note that the function 
f+ is symmetrically decreasing and g-  is symmetrically increasing, i.e. they are 
oppositely ordered.) 

The above inequalities remain valid even when the domains of definition of the 
functions are infinite, provided the relevant integrals exist. 

We are now in a position to prove the main result of this paper: if Eo is the 
ground-state energy of the Hamiltonian H = p 2 / 2 m  + V and E ,  is the ground-state 
energy corresponding to the Hamiltonian H- = p 2 / 2 m  + V -  obtained by Steiner sym- 
metrisation of the potential V, then E o a  E,. 

I t  may be noted that, for a confining potential V(x), -cc < x < cc, V-(x) will also 
be confining but V'(x) will not be so. This can easily be checked for the potential in 
the form of a well with a single minimum and bounded above. The Steiner symmetrisa- 
tion V-(x) will also be a well similar to V(x) but V'(x) will be in the form of a barrier 
(with a single maximum) and will not sustain any bound state. 

The above theorem is the quantum mechanical analogue of the corresponding result 
for the fundamental frequency of a vibrating membrane and other similar classical 
results. We give below a simple proof of the theorem as it  does not seem to have been 
explicitly given elsewhere in the literature. 

The proof follows from the inequalities stated above and the variational principle. 
Let $ be the normalised exact ground-state eigenfunction of the Hamiltonian H. It 
will have a maximum and will vanish at x = *CO. The function $- does not satsify the 
required boundary conditions, in order that it represent a bound state of a physical 
system. On the other hand, the function $+ has a behaviour similar to $. Furthermore, 
using the property (2.5) we see that $+ is also normalised. Thus we have 

I I 

Eo= $H$dr  I 
5 - ( h 2 / 2 m )  I $ O . $ d r + l  V$'dT 

zz ( h ' / 2 m )  I /V$( '  d7+ V - ( $ * ) +  d r  (using ( 2 . 7 ) )  
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5 E ,  (by the variational principle). 

Thus we see that the ground-state energy of a Hamiltonian with the potential V ( x )  is 
lowered if we replace the potential by the Steiner symmetrised function V - ( x ) .  

3. Exactly solvable examples 

In this section we shall present some examples of potentials V ( x ) ,  capable of binding 
a particle, for which an exact solution of the Schrodinger equation for both V ( x )  as 
well as V - ( x )  is possible. In all these examples we find that every eigenvalue of the 
Hamiltonian with potential V ( x )  is higher than the corresponding eigenvalue with 
potential V - ( x ) .  All the potentials we consider have been treated elsewhere for different 
purposes either as examples of ‘quantum harmonic’ potentials, which lead to equispaced 
energy eigenvalues, or of ‘classical harmonic’ potentials, which lead to energy indepen- 
dent periods of oscillation. 

3.1. The asymmetric harmonic oscillator 

The exact eigenenergies of the Schrodinger equation for the asymmetric harmonic 
oscillator were recently obtained numerically by Ghosh and Hasse (1981). They 
demonstrated that, although an asymmetric harmonic oscillator is classical harmonic, 
it is not quantum harmonic. The potential for this problem may be represented as 

V ( X )  = f m w t x ’  x > o  

V ( X )  = f m w i x ‘  x < o .  

To obtain V - ( x )  corresponding to the above potential we observe that for a given 
y 2 0 the measure m ( y )  of the set of points { X I  V ( x )  6 y }  is x 1  - x 2 ( x 1  > 0 and x2 < O), 
where 

( 3 . 2 )  y = d m w 2 x 2 - 1  1 1-2mw2x2. 2 2 

x ,  = ( 2 y / m ) ” * w ; ’  > O  x 2 =  - ( 2 y / m ) ‘ ” w ~ ’ < 0 .  ( 3 . 3 )  

v - ( ( x ,  - x 2 ) / 2 )  = y 

~ - ( 2 y / m w * * ) ” ~ )  = y  ( 3 . 5 )  

Hence we obtain 

By definition we have 

( 3 . 4 )  

which gives 

where w* = 2 w l w z / ( w l  + w z ) .  Setting ( 2 y / m w * ’ ) ’ ” =  x we obtain 

( 3 . 6 )  2 x .  

Therefore we obtain, from (3.5) and ( 3 . 6 ) ,  

( 3 . 7 )  

corresponding to a (symmetric) harmonic oscillator with frequency w * ,  leading to an 
energy independent period of oscillations in agreement with the earlier result (Ghosh 
and Hasse 1981). Since the energy levels of an asymmetrical oscillator cannot be 

v - ( x )  = +mw*2x2 --cc<x<Cc 
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obtained analytically in a closed form, we consider a limiting case where w 2  -+ CO. (The 
case with w 1  and w2 finite will be considered in 8 4.2.) In the limiting case presently 
under consideration the asymmetric oscillator reduces to an oscillator on a half-line 
x > O ,  i.e. 

V ( x )  = 00 x < o  

= tmw:x2 x > o .  (3.8) 
In the limit w 2  -P CO, U* -+ 2w, and therefore the limiting form of V - ( x )  is given by 

v - ( x )  = f ( 2 W I ) 2 X 2  --co<x<CO. (3.9) 
The eigenenergies corresponding to the potential (3.8) are given by 

E, = (2n+5)hwl n = 0 , 1 , 2  , . . . .  (3.10) 

On the other hand, the energy levels corresponding to V - ( x )  of equation (3.9) are 
given by 

(3.11) E ,  = (2n + l )hw,  n =0 ,  1 , 2 , .  . . . 
From equations (3.10) and (3.11) it is evident that E, > E ;  for every n. 

3.2. Harmonic oscillator with inverse square potential (isotonic oscillator) 

Let the potential corresponding to this problem be given by 

V ( x )  = a 2 x 2 +  b2 /x ’  x > o .  (3.12) 

Writing ab = V ,  and c = ( b / a ) ” ’  we can rewrite (3.12) in the form 

V ( x ) =  v, --- +2v,. (: 3’ (3.13) 

The eigenenergies for a particle moving in the potential (3.13) are well known (see, 
for example, Gol’dman and Krivchenkov 1961) and are given by 

(3.14) E,, = hw{ n + 4 +a[ ( U,+ 1 )”’ - ( + 2 V, 

where 

w = (8 Vo/mc2)”’  ~ , = ( 8 m ~ , c ’ / h * ) ’ ’ ~ .  (3.15) 

The Steiner symmetrised form V - ( x )  corresponding to V ( x )  of equation (3.12) may 
be obtained by following the procedure outlined in the previous example or more 
simply by noting that V ( x )  is classical harmonic with the classical angular frequency 
w given by equation (3.15) (Nieto 1981). Thus V - ( x )  is given by 

(3.16) v - ( x )  = fmw’x*+ 2 v,. 
The energy levels corresponding to the above potential are given by 

E ,  = ( n + $ ) h w  +2V0. (3.17) 
A comparison of the above expression with (3.14) shows E,  > E, for all n. 

3.3. The Morse potential 

We shall now compare the energy levels corresponding to the Morse potential 

V ( x )  = A(e-2u“ - 2 e-‘”) --oc<x<CO (3.18) 
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with those corresponding to its Steiner symmetrised form. The Schrodinger equation 
with the potential V(x)  given above can be solved exactly (Landau and  Lifshitz 1958). 
The energy eigenvalues E ,  are 

(3.19) 

where y = h 2 a 2 / 8 m .  To get V-(x)  corresponding to (3.18) we proceed as in the earlier 
example and determine x, and x2 (x,  > x2) for a given y such that 

E,  = - y ’ [ y - ’ J A -  ( 2 n  + 111’ 

y = V(X,) = V(x,). (3.20) 

Substituting the form (3.18) for V(x)  we obtain, after some simplification, 

x, = -a-’ I n { l  - [ l+(y/A)]” ’}  

2 -  - -a-’ In{ 1 + [ 1 + ( y / A ) ] ” ’ } .  

Hence we have 

(XI -x2)/2 = (2a)-’  

(3.21) 

(3.22) 

(3.23) 

By definition V - ( ( x ,  - x2)/2) = y .  Setting ( x l  - x 2 ) / 2  = x in (3 .23)  and solving for y in 
terms of x we obtain 

(3.24) 

This is another potential for which exact solution of the Schrodinger equation is 
possible (Landau and Lifshitz less). The energy eigenvalues, say E , ,  are given by 

y = V-(x)  = - A  sech2 a x .  

E ,  = -r2[(1 + ~ - ~ A ) ” ’ - ( 2 n  + l ) ] ’  (3.25) 

with the same definition of y as in equation (3.19). The inequality E,  > E ,  is satisfied 
for all the bound-state energies even in this case. 

4. Counterexamples 

We shall now present two counterexamples to show that Steiner symmetrisation of the 
potential does not, in general, lower the energies corresponding to the excited states. 
(The ground-state energy, however, is always lowered on Steiner symmetrisation as 
established in § 2. )  

4.1. Two S function potentials 

Consider the potential V(x)  given by 

V(X)  = - (  h 2 a / 2 m ) [ 8 ( x - a ) +  8(x+a) ] .  

The solution of the corresponding Schrodinger equation 

9 ” + a [ 8 ( x - a ) + S ( x + a ) ] 9  = K2?P 

where K 2  = - 2 m E / h 2 ,  with E <O,  may be written in the form 

* (x)  = A exp[ - K J ( x  + a ) \ ]  + B exp[ - K  I(x - a ) \ ] .  
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The above wavefunction is continuous everywhere. However, in the presence of a S 
function potential the derivative of the wavefunction is not continuous (the probability 
current density is still continuous as required on physical grounds). The discontinuity 
in the derivative of the wavefunction is given by 

(4.4) 

where x = b is the location of the S function potential. Using the condition (4.4) for 
b = *U, we get two homogeneous equations determining the constants A and B. The 
condition for a non-trivial solution leads to the following equation for K :  

'€"( b + ) -'€''( b - )  = -a'€'( b )  

e-4Ka = [ ( 2 K / a ) - 1 ] ' .  (4.5) 

It is easy to argue, from considerations of the derivatives at K = 0 of the expressions 
on both the sides of the above equation, that if a a  3 1 there are two allowed values 
of K and consequently two bound states in the region E < O .  Also, equation (4.5) has 
no solution in the range a < K <E, since for such K the left-hand side is less than 
unity and the right-hand side is greater than unity. 

Upon Steiner symmetrisation of the potential (4.1) we get V - ( x )  as a single 6 
function potential: 

v - ( x ) =  - ( h ' a / m ) S ( x )  (4.6) 

giving rise to only one bound state corresponding to K = a, with the energy E ;  = 
- h 2 a 2 / 2 m .  Thus we have the ground state of V - ( x )  lower than that of V ( x )  given 
by (4.1) with au > 1. The first excited state of V - ( x )  is at E =0,  whereas that 
corresponding to V ( x )  is at some E < O .  Hence we conclude that the energy level 
corresponding to the first excited state is not, in general, lowered on Steiner symmetrisa- 
tion of the potential. 

4.2. Asymmetric oscillator 

The exact eigenenergies for the potential ( 3 . 1 )  have been tabulated by Ghosh and 
Hasse (1981) for the two values of a = w , / w 2  = 0.5, 0.8. In table 1 we compare these 

Table 1. Quantum numbers v:,""' (Ghosh and Hasse 1981) and v i  (corresponding to the 
Steiner symmetrised potential given by equation (3.7) for two values of a. 

1 0.1667 
2 1.5000 
3 2.8333 
4 4.1667 
5 5.5000 
6 6.8333 
7 8.1667 
8 9.5000 
9 10.8333 

10 12.1667 

0.1787 
1.4934 
2.8348 
4.1675 
5.4990 
6.8337 
8.1670 
9.4997 

10.8335 
12.1668 

0.0555 
1.1667 
2.2178 
3.3889 
4.5000 
5.61 1 1  
6.7222 
7.8333 
8.9444 

10.0556 

0.0567 
1.1659 
2.2784 
3.3886 
4.5003 
5.6110 
6.7224 
7.8333 
8.9443 

10.0556 
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with the eigenenergies corresponding to the Steiner symmetrised potential (3 .7 ) .  For 
ease of comparison we express E ,  in terms of v i  by writing 

E ,  = (v, + i ) h w l  (4.7) 

It is clear from table 1 that the inequality E,, > E ,  is not valid for all n. However, the 
values of E ;  are remarkably close to E,, for both the values of CY and for all the values 
of n listed in table 1. 

We have also performed a variational calculation for the ground-state energy with 
potential (3.1) by assuming a trial wavefunction in the form 

CC, = A exp(-malx2/2h) x > o  

= A  exp(-ma2x2/2h) x < o  
(4.8) 

with (Y I and C Y >  as variational parameters. Following the standard variational procedure 
we find 

E*”‘= (h/2)(CYlCY2)”2 (4.9) 

where 

(4.10) 

with .$= a 2 / a l ,  being the (only) positive root of the biquadratic 

t 4 + 2 t 3  -2CY25- C Y 2  = 0. (4.11) 

For CY = 0.5 we get viar = 0.1967 and for CY = 0.8 we get vyar = 0.058 15. These can be 
compared with the lower bound and the exact value listed in table 1. In table 2 we 
give the variational upper bound and the lower bound by Steiner symmetrisation for 
a range of values of a. It is evident that only values of a in the interval 0 < CY s 1 need 
be considered. As expected the agreement is better for the values of CY close to unity. 

Table 2. Bounds on the quantum number vtxdc‘ for the asymmetric harmonic oscillator. 
The variational upper bound VI“‘  and the lower bound U;, obtained by Steiner symmetrisa- 
tion, are given for a set of values of a. 

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .o 

v i a r  0.8647 0.4650 0.3738 0.2705 0.1967 0.1403 0.0953 0.0581 0.0267 0.0000 
v ,  0.4091 0.3333 0.2692 0.2143 0.1667 0.1250 0.0882 0.0556 0.0263 0.0000 

We have also performed a numerical calculation of the energy levels where the 
potential was taken to be a combination of two square well potentials of unequal width 
and depth. The numerical results clearly show that, on Steiner symmetrisation of the 
potential, lowering of the energy level occurs for the ground state as well as for a first 
few excited states but notfor all the excited states. 

5. Conclusions 

We have shown that the ground-state energy of a Hamiltonian is lowered on Steiner 
symmetrisation of the potential. We have also shown that, in a number of cases, Steiner 
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symmetrisation of the potential leads to the lowering of all the bound-state energy 
levels. In  two instances, i.e. a harmonic oscillator on a half-line and a harmonic 
oscillator with a centripetal barrier, Steiner symmetrisation led to a harmonic oscillator 
potential. In  view of the result derived by Landau and  Lifshitz (1960), this should not 
be surprising. In  fact, any classical harmonic potential with a single minimum will be 
transformed into a harmonic oscillator potential. For this class of potential the 
ground-state energy of the corresponding Hamiltonians would be bounded from below 
by the harmonic oscillator ground-state energy. 

The Steiner symmetrisation of the Morse potential has brought out its interesting 
connection with yet another exactly solvable potential. 

The idea of Steiner symmetrisation can be applied in a variety of other situations 
as well. As an example, we may consider the Schrodinger equation corresponding to 
a two-dimensional potential box which is in the shape of a rhombus. A rhombus can 
be obtained from a rectangle by Steiner symmetrisation with respect to a diagonal. 
The rhombus in turn leads to another rectangle under Steiner symmetrisation with 
respect to a side. Since the Schrodinger equation for a particle in a rectangular box 
can be solved exactly, we can obtain both an upper and a lower bound on the 
ground-state energy corresponding to the rhombus-shaped potential box. The same 
procedure can obviously be extended also to a three-dimensional rhombohedral box. 

Acknowledgment 

The authors are grateful to the referees for pointing out some recent references. 

References 

Barnes J F, Brascamp H J and Lieb E H 1976 Studies in Mathematical Physics ed E H Lieb, B Simon and 

Beckner W 1975 Ann. Math. 102 159-82 
Brascamp H J and Lieb E H 1976 Adv. Math. 20 151-73 
Ghosh G and Hasse R W 1981 Phys. Rev. D24 1027-9 
Glaser V, Martin A, Grosse H and Thirring W 1976 Studies in Mathematical Physics ed E H Lieb, B Simon 

Goldman I I and Krivchenkov V D 1961 Problems in Quantum Mechanics ed B T Geilikman (Oxford: 

Hardy G H, Littlewood J E and Polya G 1951 Inequalities (Cambridge: Cambridge University Press) 
Katriel J and Rosenhouse A 1985 Phys. Rev. D 32 884-90 
Landau L D and Lifshitz E M 1958 @antum Mechanics (Reading, MA: Addison-Wesley) 
- 1960 Mechanics (Oxford: Pergamon) pp 27-9 
Nieto M M 1981 Phys. Rev. D 24 1030-2 
Nieto M M and Gutschick V P 1981 Phys. Rev. D 23 922-6 
Nieto M M and Simmons L M 1979 Phys. Reo. D 20 1342-50 
Polya G and Szego G 195 1 Isoperimetric Inequalities in Marhematical Physics (Princeton: Princeton University 

Wheeler J A 1976 Srudies in Mathematical Physics ed E H Lieb, B Simon and A S Wightman (Princeton: 

A S Wightman (Princeton: Princeton University Press) pp 83-90 

and A S Wightman (Princeton: Princeton University Press) pp 169-94 

Pergamon) pp 52-3 

Press) 

Princeton University Press) pp 351-422 


